
* _...,

UNCLASSIFIED

SECUR!TY CLASSIFICATION OF THIS PAGE (W"n Dale Enlerd)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Al Memo 752I

4. TITLE (td Subtitle) S. TYPE OF REPORT & PERIOD COVERED

N A Method for Computing Spectral Reflectance memorandum

s. PERFORMING ORG. REPORT NUMBER

1. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s)

Ln A. Yuille N00014- 80- C- 0505

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency December 1984
1400 Wilson Blvd 13. NUMBEROF PAGES

Arlington, Virginia 22209 11

- 14. MONITORING AGENCY NAME A ADDRESS(tI dillfent from Controlling Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED
Information Systems -_
Arlington, Virginia 22217 IS&. OCLASSIICATON/DOWNGRADING

1S. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetrae mtered In BIck 20, it different from Report)

IS. SUPPLEMENTARY NOTES

None

,- . I KEY WORDS (Continue on revere side It nec ,sary and identify by block number)

color,
material edges
basis functions
mondrians.

20. ABSTRACT (Continue n reveee side It necessary and Identif by block number). olo ofan bjet .i

""J Psychophysical xperiments show that the perceived color of an object is '- '

LL- relatively independent of the spectrum of the incident illumination and
depends only on the surface reflectance. We demonstrate a possible solution

SO to this undetermined problem by expanding the illumination and surface reflec
ance in terms of a finite number of basis functions. This yeilds a number of

* nonlinear equations for each color patch. We show that given a sufficient
number of surface patches with the same illumination it is possible to solve

.DD I 1473" EDITION OF I NOV SS IS OSOLETE UNCLASSIFIED
S/N 0102*014-6601 ,

S6CT CLASS&6)CATION 1;KPAOE9jJsUe3 401 00i
- -



Block 20 continued...-

these equations up to an overall scaling factor. Generalizations to the spatial
dependent situation are discussed. We define a method for detecting material
changes and illustrate a way of detecting the color of a material at its
boundaries and propagating inwards.

r~f



MASSACHUSETTS INTTT OF TECHflNOJLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

AlI. Memo 752 December, 1084

A Method for Computing Spectral Reflectance

A. Yuille

Abstract. Psychophysical experiments show that the perceived colour of an object is
relatively independent of the spectrum of the incident ilumination and dopends only on the
Lurface ietleciance. We demonstrate a possible soIlution to thiS Lind -f dvtlerrined problemn
by expanding the illumination and surface reflectance in terms of a finite number of basis
functions. This yields a number of nonlinear equations for each colour p~atch. We sh that
given a sufficient number of surface patches with the same illumination it is possible to solve

* these equations up to an overall scaling factor. Generalizations to the --patial dependent
situation are discussed. We define a method for detecting matotial chan oer and illusti rite a
way of detecting the colour of a material at its boundaries and propagating it inwards.

©c Massachusetts Institute of Tcchnology, 1984
Ilk"OWL

This report describes research done at the Artificial Intelligence Laboratory of thi Massa-6
chusetts Institute of Technology. Support for the laboratory's artificial intufigience iese.1ch c

* is provided in part by the Advanced Research Projects Agency of the Department of [)cf&.nse
under Office of Naval Research contract N00014-80-C-0505.

D GRA&I
TAB0

-:Lkn*ced



A Method for Computing Spectral Reflectance

1. Introduction. The colour of an object depends on the spectral distributions of the

incident light and the reflectance functions of the object. More precisely at each point Z

the receptors (for example, the rods and cone of the eye) measure a quantity 1, giver by

where a ,(X) is the absorption function of the receptors (a I to 4 if we consider the rods

and cones), E(x, X) is the incident illumination and S(x, X) the reflectance of the surface.

In terms of the notation used by Hurlbert (1985) our function S(x,X) is the product of the

albedo p(z, )) and the reflectance function R(n, , _).

These quantities l,(z) are then evaluated and combined to give the perception of colour.

For the human eye it is assumed that the outputs of the three cones correspond to the

perception of colour. The three cones corresponds to the three dimensions of the space of

perceived colours (von Helmholtz 1866, or see Feynman 1965 for an interesting review).'

_. ( A number of experiments show that perceived colour of an object is relatively independent

of the spectral distribution of the incident light . This is the colour constancy effect

demonstrated most clearly by Land on Mondrians. Since the incident illumination and the

surface reflectance are confounded in the input (1.1) some assumptions must be made to

disentangle them and to obtain a colour which depends on the surface reflectance alone.

This paper suggests a scheme for doing this. Alternative schemes are described in flubin

and Richards (1984), Hurlbert and Poggio (1985).

This paper assumes that both the colour, the incident illumination and the surface reflectance

can be expressed as a finite sum of basis functions in spectral space.2 It is then shown

that given a sufficient number of patches of different surface reflectivity with roughly the

same incident illumination it is possible to solve for the surface reflectance up to an overall

scaling factor. In such a theory the colour of a patch would depend on the colour of

the neighbouring patches, this is consistent with Land's experiments. Rubin and Richards

(1984) have considered ways of distinguishing such "material" patches by considering the

spectral properties of the observed intensities. They discuss "lawful processes" (such as

'The rods are not normally assumed to contribute to colour perception, however, we will argue later
that although their inputs do not directly contribute to perceived colour they can still be used to
"normalize" colour perception.

'This corresponds to the standard regularization approach (Poggio and Torre, 1984) of solving an
underconstrained problem by restricting the space of solutions.



YUILLE

orientation and shadowing) which change the albedo while still corresponding to the same

material and propose an "opposite sign slope condition" to detect such change. -

The first part of this paper, although done independently, is similar to work of Wandell and

Maloney (1984a, 1984b. In their work the illuminant and spectral surface reflectances

are also expanded in terms of a finite number of basis functions in spectral space and

neighbouring colour patches, with the same assumed illumination. Our formula for the

number of patches required differs from theirs, however, and furthermore we demonstrate

a simple way to solve the equations. Our scheme can also be extended using results from

Hurlbert and Poggio(1985) to cases when the spectral components of the illuminant and the

reflectance function vary with position. For this case we can find the colour of an object at

its boundaries and then fill in the interior. This method will automatically find the material

boundaries and thus will act as a material edge detector in the sense of Rubin and Richards

(1984).

2. The Basis Functions. First we consider the case when there is no spatial dependence

of the illuminant or the surface reflection. The inputs to the receptors are then

1. fa (X)E(X)s(X). (2.1)

We now expand E(X) and S(X) in terms of basis functions )h(X) and C(.(X)

= ,ip,(X), S(X) -j yC(X). (2.2)
1=t j==1

For the present we will set n m = 3 and choose the same basis functions

3 3

E(X) = -y ,,1,(X), S(X) = Bj,(X). (2.3)
i=t --1

This is merely for convenience and because of psychophysical evidence that perceived

colours form a three dimensional space (Helmholtz, (1866), for a review see; Feynman

1965). It is straightforward to generalize the analysis to different values of n and m and for

different numbers of rods and cones. Substituting (2.3) into (2.1) gives

4.;A riyj a~XlI~jXd (2.4)

where we use the summation convention over i and j. -

We can write this as
31 am grateful to Ted Adelson for bringing their work to my attention.

2

% % 2 .. X. ...



YUILLE

The (T'.) depend only on the absorption coefficients and the basis functions. They are

therefore parameters of the system and hence are known (the system might be taught to

learn the optimal (Tn)). The (re) and (-y.) describe the illuminant and the surface reflection

respectively. We therefore have four equations (t =I I to 4) for six unknowns (i = 1 to 3

= ! to 3). Note, however, that there are effectively only five unknowns because of the

scaling ambiguity

ri priij 11 (2.6)
P

This ambiguity4 can be traced back to (2.1) where it corresponds to the scaling

E(X) p(X), S(X) S(X).(2.7)
p

This scaling ambiguity cannot be dealt with by our theory and a further normalization

is required. Note this is the only ambiguity in our theory and only one normalization is
required. This is in contrast to the theories of Land(1983), Horn(1975) and Blake(1984)

where colour is computed independently in seperate channels each of which has to be

normalized seperately. Unlike these theories (for a review of these see Hurlbert 1985) our

method allows interactions between channels and hence we only need one normalization.

To resolve this ambiguity we can normalize the light source by making (ri) a unit vector, or

by setting r, - t.

A single patch gives us four equations for five unknowns. Suppose we have a neighbouring

patch with a different spectral surface reflectance. This second surface reflectance can be

expressed in terms of basis functions by

3S201) 00 n(). (2.8) :.

Now if we make the reasonable assumption that the spectral distribution of the illuminant is

unchanged on the second patch we measure four new quantities

- •if jT" (2.9)

'whose nature was clarified during discussions with Hurlbert and Poggio

3
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which involve only three iew unknowns (-.). We combine this with (2.8) to get eight

equations for eight unknowns. Number counting suggests this is enough to get a unique

solution. The equations are non-linear however and, as we will show in the next section, in

some cases there may be more than one solution.

For the human eye to use a colour scheme like this with four receptors, the rods are

necessary as well as the cones. If we just use the cones and have three receptors it follows

from (2.10) that we can only have two basis functions and hence only a two dimensional

space of perceived colour. Observe that the output from the rods can be treated differently

from the output from the cones. It is combined with them to solve (2.4) and (2.6) and

determine the (-j) and the (-y.) but it is only the inputs from the cones that gives the

colours. The rods and the cones combine to determine the perception of colour from the

spectral information at the cones.

We now consider the general case when there are p receptors, n basis functions for the

illuminant and m for the reflectance function. Suppose we have q patches. Then the number

of equations is pq. The number of variables is n + rnq - I (the 1 comes from the scaling

ambiguity). To obtain a unique solution~we need

pq >n + nq -I. (2.10) -

This is a neccessary condition. To check it is sufficient we will show that the non-linear

equations can be solved.

Note from (2.10) that we always need p > 7n, that is the number of different photoreceptors

must be greater than the number of basis functions for the reflectance. Thus to obtain a

three dimensional colour space with this scheme at least four photoreceptors are required.)

The number of patches required is

q n --q> n-. (2.1)
p-M

So if there are two basis vectors for the illuminant and surface reflectances (n = m =2) and

three receptor fields (p =3) we only need one patch.

3. Solving the Equations.

We now consider the equations in more detail. They are of the form

l_ =_ri_,j_,k, rij ij k (3.1)

5This equation has also boon derived by J. Rubin (pers. comm.). It does not imply that q >e n, a
formula stated by Wandell and Maloney (1984a), and a counterexample is given in the next section.

4



The matrices V.'~ are parameters of the system given by

Tri,.=f,(jlXIXd. (3.2)2

If the basis functions (B1(N)) do not overlap then the off-diagonal terms of '. are zero
(T - 0, i 4 . This case is considered by Huribert and Poggio (1985). This simplifies thejequations (3.1) but at the cost of preventing interactions betwoon different colour channels7
(although interactions can be introduced later). These interactions are important for our
purposes since they mean that only one colour normalization (the overall scaling given by
(2.7)) is needed.

The basic strategy to solve the equations (3.1) is to take linear combinations of the matrices
7' . to obtain simpler equations. We illustrate this by considering the case when there are
three photoreceptors, and two basis functions (it = m -= 2, p =3:). AS shown ill the previous
section only one patch is needed to solve the equations. These are

15' i'- =T 7 T.i 1, I2.j 1, 2.p 1, 2,3. (3.3)

The (V.) are three two-by-two symmetric matrices. The space of such matrices is three

kdimensional and so the T - form a basis for this space.6 Hence we can find three vectors

p,,a~ 1,2,3) such that

0 01

Combining (3.4) with (3.3) defines three (known) numbers A,, A2, A3 by

83 3

A,= p, , ,A2= P10r 21 2 , A3 > 3t _ 0 17+ T2111 (3.5)

We normalize the light source by setting vl 1. This reduces (3.5) to

y_______ A ,,y2r2 A2, A Ir2  Ill ~ A3. (3.5)
6We choos the ('rn, so that they are linearly independent. We are free to do this since they are the

Parameters of the system.

5
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These can be solved to give

A3 5-(A: - 4 1 A21.)'/ 2  A3 -F (A2 - 4AA 2)1/2
r I, r2  -- 2A1 ,72 (3.7)

This gives two possible solutions (the values of r2 and -y" are interdependent). The constraint

that the illuminant and the reflectance function are both positive functions may not help to

resolve this, the two roots of both r2 and % all have the same sign.

Note that only one patch is needed to solve for this case although there are two basis

functions.

The General Case

The basic strategy to solve the equations consists of taking linear combinations of the (rA')

and reducing them to some algebraic equations having only a finite number of solutions.

For four photoreceptors and three basis functions we require two patches with the same

illumination. We have two sets of equations, one from each patch,

4, = riijT .,k, =r,€i7 (3.8)

A simple way to solve these equations is by choosing the basis vectors (B(X)) so that the

('",') generate a space spanned by

0 o0 0 1 01 0
o 0 0 1 0J,|0 ,,000• (3.9)

0O O0 OJL 0JL 0o ol1, J00 oi 001!.
The conditions on the basis vectors (fl,( )) which this requires are

J 0, f "l 1,(X)1) 2(X)dX f a,'I(X)?3(X)dX. (3.10)

To see this observe that the space of symmetric three by three matrices is six dimensional.

The matrices defined by (3.9) define a four dimensional subspace and to ensure that the

(TA) lie in this subspace we must impose the two conditions of (3.10). To check the

exact form of (3.10) consider all possible matrices I1, that can be generated by linear

combinations of (3.9). First observe that it is impossible to get a matrix with I,, /- 0, this

gives us the first equation of (3.10). The second equation comes from noting that we must

have 1112 == 1132 for all 11.

We now take linear combinations of (3.8) using four vectors , (a 1, 2, 3, 4) as in (3.4) and

(3.5) until we generate the basis matrices of (3.9). The equations (3.8) are now of form

6

€ ",. -.:....... -....... ...,.. :....... .-..-......... ........ . .... ........... .... ,...... ...............- ..-, .-..-. ,-.,....'



7 71 --

YUILLE

A2 A3
1, A,- 2  1 3 (.1

r_ 2  __ 1'3

-~R B'fI,2-- - (3.12)

* and

A1 (r 2r3) ±A.2(T3 + r23) + A3r' /14T71 3, I( r.3 ) + 132(,r3 + T3 +13 3TR~ I .T2T3,.- (3.13)

*The (Ai) and (I~i) are linear combinations (using the ya)of the (1,,) and the (tnM,). We have
normalized by setting rj I and divided some of the equations by r2 and 73.

This gives

r2 ~(AI b B1)ra(314(A I bil J)r3 + (A3 - 611).(31l

where 6 A2/!12. We can Substitute this into (3.13) to obtain a quartic equation for r3

K -. which will have at most four solutions. Then we solve (3.14) for r2 and (3.11) and (3.12) for
the (-Ii) and ( j).

* * The basis matrices defined by (3.9) were choosen arbitrarily. The same analysis could be
applied for other basis matrices. For some choices of basis there is only one possible

* solution. An example is

[I( 01 0 [0 0 1]r 0 01

10 0 II 0 00 0 0 ,0 1 (3.15)

This basis, however, requires that

fIJ'(X)dX 0, fal'I(X)dX 0. (3.16)

which seems an unnatural choice for the (Be). This illustrates the important point that the ' 1

choice of basis functions is crucial. By assuming that we can express our illumination
and surface reflectance in terms of a finite set of basis functions we are performing an

* implicit type of regularization (Poggio and Torre, 1984) by restricting the space of possible

solutions. Only if the basis -functions are choosen so that linear combinations of them are
able to represent most of the naturally occuring illuminants and surface reflectances will

methods of this type give good solutions.

7
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This strategy of taking linear combinations of the (To) will drastically simplify the equations.

It is also possible to solve equations (3.8) directly. We write the equation as

l,.._ a'
IA, '1 (,T ',r, + T". T2 + T" r3) + -Y,(T",, + T' 7-2 + T' T'3) + 3(CT" r, + T'2 r2 + T' r3), /I 1,A. '...

(3.17)

We can use three of these four equations to solve for (-y,) in terms of the (ri). This will leave

us with two polynomial equations relating r2 and r3 (we have set r1 = 1). Similarly we solve

similar equations for (A9,) in terms of the (as) leaving another polynomial equation in r2 and

T3. These two equations in r2 and r3 can be combined to give solutions for r2 and T3. Since

these equations are polynomials there will usually be more than one solution, and in some

cases an infinite number. The previous method involving basis matrices is a lot simpler. If

it is impossible to choose a basis like (3.9) it will still be possible to simplify the equations

by taking linear combinations of the (7'.) to reduce the matrices to simple forms.

Note that so far nothing has been said about the behaviour of the solution. It is even

conceivable, though unlikely, that the solutions are sometimes not positive everywhere.

They are guaranteed to be smooth provided the basis functions are. Instead of choosing .

three basis functions and solving for their coefficients it would be possible to have more

basis functions and impose some a priori expectations on the solutions. Such an approach - .-

is discussed in Richards, Yuille and Poggio (1985).

The Spatial Extension

In this section we consider extensions to situations when the surface reflectance and the
*illumination are functions of space. Hurlbert and Poggio (1985) have shown that for many

cases the spatial dependence of the illumination and surface reflectance can be factored

out from the spectral dependence for colour patches. For these cases we can write

S(X, X) S(X)f(X) (4.1)

and

E(z, X) E(,)g(x) (4.2)

where 1(z) and g(z) depend only on position.

With these assumptions the spatial dependence of the illuminant and the surface reflectance,

when not due to material (colour) changes, is factored out and the analysis can proceed

as in the previous section. There is an important difference, however, the scaling ambiguity

8f~tl "%et
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(2.7) will now have a spatial dependence. In other words we will not be able to distinguish

the spatial dependences f() and g(z) of the surface reflectance and illumination. For

many cases the illumination will have little spatial variation (for example, if the light sources

are a long way away) and we can set g(z) = I and solve for f(z). Otherwise we can

consider the boundaries between two materials and assume that the spatial dependence

of the illumination is negligible across the boundary. We can then solve for the colour on

either side of the boundaries (and fill in if necessary). A third method is to note that if there

is a single light source the spatial dependence U(x) will have a definite form, typically it will

fall off as I/r 2 (where r is the distance to the light source), and so f(z) can be determined.

In the previous sections we were considering a Mondrian style world consisting of flat

patches of uniform colour. Our method would sample two patches and obtain two equations

(2.5) and (2.6). For the more general case we would sample neighbouring points. If the

two points lie on the same material the 1, will be proportional to the k, and the equations

will be underdetermined. If the points occur at a material boundary, one lying in each

material, then we have enough equations to solve for the colours. Since we are considering

neighbouring points it is reasonable to assume that the illuminant is the same (including the

scaling factor) for each point.

To summarize: we sample neighbouring points in the image and compare their values I,

and kM. If these are proportional we conclude that the points have the same colour (though

not necessarily the same brightness) and hence lie on the same material. If they are not

then we are on a material boundary and can solve for the colours on either sides of the

boundary. The colour cannot change inside the boundary, or else we would detect it, and so

the colour on the boundaries determines the colour in the interior. However the brightness,

or strength, of the colour is undetermined. If the illuminant is constant in space we can

solve this by a single global normalization (such as setting T 1 = I, as in (3.5)). We suggest

making this assumption even if the illuminant varies spatially, unless the variation is very

large or there is strong evidence to the contrary from other souces. Thus spatial variation

of the illuminant will be interpreted as due to changes in the reflectance function due to

orientation and other changes.

Other ways of generalizing to allow for spatial dependence would include using the standard

assumption that the spatial variation of the illuminant is smaller than the spatial variation of

the surface reflectance (Land (1983), Horn (1974), Blake (1984)). New methods for doing

this are discussed in Hurlbert and Poggio (1985) and extensions will be discussed in a

forthcoming paper.
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